In vitro and in vivo pharmacological characterizations of the antitumor properties of two new olivacine derivatives, S16020-2 and S30972-1.
نویسندگان
چکیده
S16020-2, a new olivacine derivative and a topoisomerase II inhibitor, has recently entered clinical trials. New analogues and derivatives have been synthesized from the S16020-2 compound. Preliminary data indicate that S30972-1, one of these S16020-2 derivatives, may exhibit a comparatively higher level of antitumor potency associated with an improved therapeutic index than does S16020-2. The antitumor activities of S16020-2 and S30972-1 were therefore characterized both in vitro and in vivo, with Adriamycin and etoposide chosen as reference compounds. The in vitro data show that S30972-1 is a topoisomerase II inhibitor, mediating its activity through an ATP-dependent mechanism such as S16020-2. The two olivacine derivatives exhibited similar activities in vitro at the levels of the global growth of six human cancer cell lines, of the induction of apoptosis, and of the G2 cell cycle phase arrest. The in vivo antitumor activity characterization included the use of two murine leukemia types (P388-LEU and L1210-LEU), two murine lymphoma-like models (P388-LYM and L1210-LYM), two mammary adenocarcinomas (MXT-HI and MXT-HS), and one melanoma (B16). The data show that S30972-1 is actually more efficient in vivo than S16020-2, a feature that may relate to the fact that S30972-1 is less toxic than S16020-2. The S30972-1 compound exhibited in vivo a level of antitumor activity that was also actually higher than that exhibited by Adriamycin and similar to that exhibited by etoposide.
منابع مشابه
Cellular resistance to the antitumor DNA topoisomerase II inhibitor S16020-2: importance of the N-[2(Dimethylamino)ethyl]carbamoyl side chain.
The new olivacine derivative S16020-2 (NSC-659687) is a DNA topoisomerase II inhibitor endowed with a remarkable antitumor activity against various experimental tumors. In vitro physicochemical properties of this compound, in particular its interaction with DNA and DNA topoisomerase II, were very similar to those of ellipticine derivatives, except for a strictly ATP-dependent mechanism of cleav...
متن کاملThe olivacine S16020 enhances the antitumor effect of ionizing radiation without increasing radio-induced mucositis.
The combination of a novel topoisomerase II inhibitor, S16020, and ionizing radiation (IR) was investigated with the aim of assessing normal tissue tolerance using a mouse mucosal lip model and antitumor activity in a human carcinoma (HEP2) cell line. No increase of acute mucosal reactions was seen when combining S16020 with IR as compared with IR alone. Using clonogenic cell survival assay, a ...
متن کاملS16020-2, a new highly cytotoxic antitumor olivacine derivative: DNA interaction and DNA topoisomerase II inhibition.
S16020-2 (NSC-659687) is a new olivacine derivative that is highly cytotoxic in vitro and displays remarkable antitumor activity against various experimental tumors, especially some solid tumor models. Its antitumor activity is notably higher than that of 2-methyl-9-hydroxy-ellipticinium (NMHE) and comparable to that of doxorubicin HCl, although with a different tumor specificity. S16020-2 is b...
متن کاملCellular Resistance to the Antitumor DNA Topoisomerase II Inhibitor S16020-2: Importance of the N-[2(Dimethylamino)ethyl]carbamoyl Side Chain
The new olivacine derivative S16020-2 (NSC-659687) is a DNA topoisomerase II inhibitor endowed with a remarkable antitumor activity against various experimental tumors. In vitro physicochemical properties of this compound, in particular its interaction with DNA and DNA topoisomerase II, were very similar to those of ellipticine derivatives, except for a strictly ATP-dependent mechanism of cleav...
متن کاملArteether Exerts Antitumor Activity and Reduces CD4+CD25+FOXP3+ T-reg Cells in Vivo
Background: Chemo-immunotherapy is one of the new achievements for treatment of cancer, by which the success of anti-cancer therapy can be increased. In vitro studies have been shown that Arteether (ARE) induces apoptosis in tumor cells, but not in normal cells. Objective: To investigate the cytotoxic and immunomodulatory properties of Arteether in-vivo and in-vitro. Methods: In this study, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 6 9 شماره
صفحات -
تاریخ انتشار 2000